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Abstract

The linear ballistic accumulator model is a theory of decision-making that has been used to analyze data from

human and animal experiments. It represents decisions as a race between independent evidence accumulators,

and has proven successful in a form assuming a normal distribution for accumulation (“drift”) rates. However,

this assumption has some limitations, including the corollary that some decision times are negative or undefined.

We show that various drift rate distributions with strictly positive support can be substituted for the normal

distribution without loss of analytic tractability, provided the candidate distribution has a closed-form expression

for its mean when truncated to a closed interval. We illustrate the approach by developing three new linear ballistic

accumulation variants, in which the normal distribution for drift rates is replaced by either the lognormal, Fréchet,

or gamma distribution. We compare some properties of these new variants to the original normal-rate model.
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The linear ballistic accumulator model (LBA: Brown and Heathcote, 2008) is an evidence accumulation1

model for simple decision-making, which has been applied to a wide range of data from human and animal exper-2

iments. The LBA assumes that decisions are made by separate independent accumulators, each of which gathers3

evidence in favour of a different choice outcome, with the first accumulator to reach a threshold deciding the re-4

sponse. Figure 1 illustrates a typical LBA accumulator, with a decision threshold (dotted line) and an accumulation5

process (rising arrow). Figure 1 also shows the simplicity of the LBA model, with constant linear accumulation,6

and allowing just two sources of variability. The shaded rectangle indicates random variability in the starting point7

of the evidence accumulation process, and the bell curve indicates random variability in the rate of evidence accu-8

mulation. Both of these sources of randomness operate independently from decision to decision, and independently9

between accumulators corresponding to different choices. Using just these two sources of variability, the LBA model10

accounts for the variability observed in decision-making data across a wide range of experimental paradigms.11

Following similar assumptions for the diffusion model (Ratcliff and Rouder, 1998), the LBA model has a12

uniform distribution for the starting points of evidence accumulation, and a normal distribution for the speed of13

accumulation (“drift rates”). These assumptions allowed the development of simple, closed-form expressions for14

both the probability density function (PDF) and the cumulative distribution function (CDF) for the finishing times15

of the accumulation process (Brown and Heathcote, 2008). This mathematical tractability is an important feature16

of the LBA model. For example, it makes efficient estimation easy using a wide variety of optimisation techniques17

and statistical approaches (Donkin et al., 2009a; Turner et al., 2013).18
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Figure 1: Schematic LBA accumulator. As decision time grows (abscissa) evidence is accumulated (ordinate), with an example accu-
mulation trajectory shown by the rising arrow. Typically, several independent accumulators would race in parallel, representing the
different choices, with the decision triggered by the first to reach threshold (dotted line). Variability in decision-making is modelled
by randomness in the start point of evidence accumulation and in the accumulation rate. These are conventionally assumed to follow
uniform and normal distributions, respectively.

The assumption of a normal distribution for drift rates in the LBA model means that on some trials it19

is possible that the sampled drift rates for all accumulators will be negative, so a decision is never made. Brown20

and Heathcote (2008) found that such cases were extremely rare in practice when fitting to a range of empirical21
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data sets. However, here we address this potential problem by developing a general mathematical approach that22

maintains the mathematical tractability of the LBA model while allowing for various, strictly positive, drift rate23

distributions.24

In the following, we first develop a general approach for working with a class of drift rate distributions25

in the LBA model. We then illustrate this method using three distributions from this class. This is followed by26

an investigation of the ability of the three new LBA model variants, as well as a variant of the original LBA, to27

account for seminal data reported by Wagenmakers et al. (2008). We also investigate similarities between the LBA28

model variants, by fitting each variant to synthetic data generated by the other variants. The three new variants all29

assume drift rate distributions which are strictly positive. Therefore, to make the comparison more precise, rather30

than compare against the original LBA (with normally distributed drift rates) we employ a slight modification: we31

assume that the normal distribution of drift rates is truncated to positive-only values. To keep this clear, we refer32

to this variant as the “truncated normal LBA”. The truncated normal LBA has simple analytic solutions, and has33

been shown to be almost identical, in practice, to the conventional LBA (e.g., Heathcote and Love, 2012).34

Analytical derivation of PDF for arbitrary drift rate distribution35

For the purposes of a very wide variety of applications, it is sufficient to know the density and cumulative36

distribution functions (PDF and CDF, respectively) for the finishing times of a single linear ballistic accumulator.37

For example, with these two expressions, the joint density over response time and choice can be written via standard38

independent-race equations, for a large range of decision models. These models include simple races forN -alternative39

forced choice, as well as more complex architectures involving logical AND and OR stopping rules (Brown and40

Heathcote, 2008; Eidels et al., 2010).41

Brown and Heathcote (2008) derived the CDF for the linear ballistic accumulator model with normally-42

distributed drift rates by working directly with the expression for the normal distribution’s density function. At43

one point in their analysis, one of the terms in the expression for the CDF is related to a truncated mean of the44

drift rate distribution. It is this observation that motivates our current work, and allows the development of a more45

general approach.46

Consider a single linear ballistic accumulator, with uniformly distributed starting points across trials. Our47

approach to the problem involves conditioning on a particular sample of the drift rate, which we call u. Conditioning48

this way allows for calculation of the finishing time in the obvious manner. Of course, these rates cannot be observed49

in practice, so we then integrate over the distribution of start points, to remove the conditionality.50

Suppose, without loss of generality, that the uniform distribution of start points is on the interval [0, A],51

and that the response threshold is at b ≥ A; therefore, the distribution of distances from starting point to threshold52

is also uniform, on the interval [b − A, b]. Suppose also that drift rates are distributed across trials according to a53

strictly positive distribution with density g and cumulative distribution function G. Let p represent the distance to54
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Figure 2: Cumulative distribution function (CDF) of the distance, p, between the starting point of evidence accumulation and the
threshold, which makes clear the reason for the three-branch structure of the equation for the CDF for finishing times. The distribution
is uniform on the interval [ b−A

t
, A

t
], so its CDF is: zero for values smaller than b−A

t
; one for values larger than A

t
; and increases linearly

between those points.

threshold on some trial (i.e., a uniform sample from [b−A, b]) and let u represent the drift rate sample on that trial55

(i.e., a sample from g). The time to reach threshold is then simply distance divided by rate: p/u. By definition,56

the cumulative distribution function for finishing times of this accumulator at time t, say F (t), is given by:57

F (t) = prob(
p

u
≤ t)

=

∫ ∞
0

prob[p ≤ ut]g(u)du

Integrating over the distributions of p and u provides the required expression. Since p is uniformly dis-58

tributed, it has a three-piece linear CDF, as shown in Figure 2. This result allows the expansion of prob[p ≤ ut] in59

the above equation for F (t) into three terms: it is zero whenever u < b−A
t ; it is linear in u, whenever b−A

t < u < b
t ;60

and it is one whenever u > b
t . The first of these three branches is zero, and so is dropped below. The second linear61

branch can be expanded into a term with integrand g(u) and another term with integrand ug(u). The third branch62

also gives a term with integrand g(u). Together, this gives:63

F (t) =
A− b
A

∫ b
t

b−A
t

g(u)du+
t

A

∫ b
t

b−A
t

ug(u)du+

∫ ∞
b
t

g(u)du.
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The terms with integrands of g(u) require only evaluation of G, by definition of the cumulative distribution64

function. However, the term with integrand ug(u) is related to the mean of the drift rate distribution when truncated65

to the interval represented by that term’s limits of integration. For presentation reasons, it is helpful to add the66

normalizing constant corresponding to the mass of the distribution in the interval [ b−At , At ]. With the normalizing67

constant included, and replacing the integrals in the other terms with the distribution function for G:68

F (t) =
A− b
A

[
G

(
b

t

)
−G

(
b−A
t

)]
+
t
[
G
(
b
t

)
−G

(
b−A
t

)]
A

∫ b
t

b−A
t

ug(u)du

G( bt )−G( b−At )
+ 1−G

(
b

t

)

Let Z(t) represent the mean of the distribution g after truncation to the above interval, that is:69

Z(t) =
1

G( bt )−G( b−At )

∫ b
t

b−A
t

ug(u)du

Then, after some simplification:70

F (t) = 1 +

(
tZ(t)− b

A

)
G

(
b

t

)
+

(
b−A− tZ(t)

A

)
G

(
b−A
t

)
(1)

The density function for the finishing times of this linear ballistic accumulator is found by differentiation71

of Equation 1 with respect to t. This requires Z(t) to be differentiable at all t > 0; we denote its derivative at t by72

Z ′(t). Then recalling that, since G is a CDF, d
duG(u) = g(u), this gives:73

f(t) =

(
Z(t) + tZ ′(t)

A

)[
G

(
b

t

)
−G

(
b−A
t

)]
+

(
tZ(t)− b

A

)
g

(
b

t

)
+

(
b−A− tZ(t)

A

)
g

(
b−A
t

)
. (2)

Equations 1 and 2 can be used to provide closed-form expressions for the CDF and PDF for a linear ballistic74

accumulator model with any strictly positive distribution for drift rates, provided that the drift rate distribution has75

a closed form expression for its truncated mean (Z(t), above), and that this expression can be easily differentiated76

with respect to t (Z ′(t) above).77

Three New Example Drift Rate Distributions78

We illustrate the above method with three new examples of strictly positive drift rate distributions: the79

gamma, Fréchet and lognormal distributions. The question of which is the best distribution to use for drift rates80

is very complex, and beyond the scope of this work. Nevertheless, we provide some discussion of the different81

considerations in this debate, in the concluding sections.82
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Gamma Distributed Drift Rates83

The gamma distribution is an interesting case partly because it can approximate the normal distribution84

under some parameter settings. Given the success of the traditional LBA model (with normally distributed drift85

rates) in fitting data, this suggests that a gamma-LBA model might be similarly successful.86

Suppose that drift rates follow a gamma distribution with parameters α and β for shape and scale, respec-87

tively. Then ZΓ(t) from Equations 1 and 2 is the mean of a gamma distribution restricted to the interval [ b−At , bt ].88

Coffey and Muller (2000) provide expressions for this mean, which lead to:89

ZΓ(t) =
Γ(α+ 1)

βΓ(α)

[
G
(
b
t ;α+ 1, β

)
−G

(
b−A
t ;α+ 1, β

)
G
(
b
t ;α, β

)
−G

(
b−A
t ;α, β

) ]
(3)

Here, G(x; a, b) represents the cumulative distribution function of the gamma distribution evaluated at x,90

with shape parameter a and scale parameter b (see Appendix A). Throughout, we use Γ(x) to represent the gamma91

function and Γ(x, a) to represent its generalisation to the lower incomplete gamma function (also both specified in92

Appendix A). The derivative with respect to time of Equation 3, Z ′Γ(t), is easy to calculate but also cumbersome -93

see Appendix A.94

Fréchet Distributed Drift Rates95

96

Let drift rates be distributed according to a Fréchet distribution with scale and shape parameters µ and97

α, respectively, and let Fr(x; .α, µ) represent the corresponding cumulative distribution function. Then Nadarajah98

(2009) provides an expression for the truncated mean, which leads to:99

ZFr(t) =

Γ
(

1− 1
α , (

µb
t )−α

)
− Γ

(
1− 1

α , (
µ(b−A)

t )−α
)

µ
(
Fr
(
b
t ;µ, α

)
− Fr

(
b−A
t ;µ, α

))
 (4)

Once again, see Appendix A for the derivative with respect to time.100

An interesting consequence of assuming a Fréchet distribution for drift rates is that, in the absence of trial-101

to-trial variability in the starting point of evidence accumulation (i.e., with parameter A = 0), Fréchet-distributed102

drift rates give rise to Gumbel distributions for time-to-threshold. This provides interesting links to models used in103

the study of discrete choice in various applied areas (Hawkins et al., 2014; Colonius and Marley, 2014).104

Lognormal LBA105

Heathcote and Love (2012) investigated a simplified linear ballistic accumulator model, the Lognormal106

Race Model, where both the drift rate and the start point to threshold distributions were lognormal, and so the107
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distribution of threshold-crossing times for an accumulator is also lognormal. Here, we outline the case where108

the starting point distribution remains uniform and the threshold a constant, but the drift rates are distributed109

lognormally with parameters µ and σ for the underlying normal distribution. Bebu and Mathew (2009) provide110

expressions for the moments of the truncated lognormal distribution. The truncated mean takes the form:111

ZLN (t) = exp

(
µ+

σ2

2

)[
Φ
(
log( bt );µ+ σ2, σ

)
− Φ

(
log( b−At );µ+ σ2, σ

)
Φ
(
log( bt );µ, σ

)
− Φ

(
log( b−At );µ, σ

) ]
(5)

Here, Φ(x;µ, σ) is the normal cumulative density function evaluated at x with mean µ and standard112

deviation σ. The derivative with respect to time is given in the Appendix A.113

Similarities and Differences Between Four LBA Variants114

The three new LBA variants developed above have quite different properties for their drift rate distributions.115

The new variants have positively skewed drift rate distributions, and those distributions also differ in how quickly116

their right tails approach zero. We investigated the relationships between these new variants, and truncated normal117

LBA, in a model recovery exercise. This exercise involved generating synthetic data from each of the three new118

variants and from the truncated normal LBA, and then fitting those data with each of the four LBA variants in119

turn. The results revealed both similarities and differences among variants.120

To determine the values to use when generating data, we began with parameter settings for the truncated121

normal LBA which were typical of parameters estimated from standard psychophysical experiments. These param-122

eters are given in the column headed Truncated Normal in Table 1. To determine reasonable parameter settings123

for the three new LBA variants, we generated a very large sample of synthetic data from the truncated normal124

LBA using the parameters in Table 1, and found the maximum-likelihood estimates for the parameters of each125

of the three new model variants by fitting those data. These parameters were rounded off, and are reported in126

the left three columns of Table 1. There were a total of eight free parameters for each LBA variant, reflecting127

an experiment investigating two-alternative forced choices in two conditions, one emphasising decision speed, the128

other emphasising decision accuracy (as in, for example: Forstmann et al., 2008; Ratcliff and Rouder, 1998). These129

parameters were:130

• The width of the starting-point distribution (A).131

• Non-decision time (t0), separately for the speed-emphasis condition and the accuracy-emphasis condition.132

• The distance between the upper bound of the starting point distribution and the response threshold (b−A),133

separately for the speed-emphasis and accuracy emphasis conditions.134
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• Two drift rate distribution location parameters, for the distributions of drift rates in the accumulators corre-135

sponding to the correct and incorrect responses (vc and ve, respectively).136

• A drift rate distribution scale parameter (sc) only for the distribution of drift rates in the accumulator137

corresponding to the correct response.138

The parameter corresponding to sc in the accumulator representing the incorrect response was fixed arbi-139

trarily at s = 1, to satisfy a scaling property of the models (Donkin et al., 2009b). Namely, if the parameters of the140

drift rate distribution are adjusted such that the drift rate distribution is “scaled” by a constant factor, then the141

other parameters of the model can be adjusted accordingly to compensate. This situation leaves the model making142

identical predictions from very different parameters, which can be problematic in data analysis. For example, in143

the conventional LBA model with normally distributed drift rates, suppose the mean and standard deviation of144

the drift rate distribution were both doubled (which has the effect of doubling all predicted drift rates). Then, if145

the start point distribution (A) and decision threshold (b) are also both doubled, the predictions of the model are146

unchanged. This occurs for the obvious reason: the rate growth in the accumulator has doubled, but the distance147

to travel has also doubled, so the finishing time is the same. This indeterminacy is avoided by arbitrarily fixing one148

of the parameters.149

In our analyses of the truncated normal LBA model, we fixed the standard deviation of the drift rate150

distribution for the accumulator corresponding to the incorrect response to 1.0. We took a similar approach,151

fixing the rate distribution’s scale parameter to 1.0, for both the lognormal and Fréchet variants. Because of the152

multiplicative properties of the lognormal distribution, changes to the mean of the underlying normal distribution (µ)153

result in “scaling” of the drift rate distribution, so we fixed this parameter to 1.0 for the accumulator corresponding154

to the incorrect response. The Fréchet distribution has a similar property attached to its scale parameter (also called155

µ), so we also fixed this parameter to 1.0 for the accumulator corresponding to the incorrect response. We took a156

different approach for the gamma distribution, where we fixed the shape parameter of the drift rate distribution157

in the accumulator corresponding to the correct response to 1.0. This was because preliminary explorations found158

that the gamma scale parameter had very similar effects to the normal mean parameter, whereas the gamma shape159

parameter had very similar effects to the normal scale parameter.160

For each model variant, we generated 20,000 synthetic decisions using the above parameters. Our use of such161

a large sample was intended to eliminate variability due to sampling error, allowing more precise characterization162

of the differences between the models’ predictions due to their different drift rate distributions alone.163

We fit the synthetic data set generated by each of the four LBA variants with all of the LBA variants.164

We used maximum-likelihood estimation with algorithms described in detail by Donkin et al. (2009a). Figure 3165

shows cumulative distribution functions jointly over correct and incorrect responses (black and grey, respectively)166

for both speed-emphasis and accuracy-emphasis conditions (left and right pairs of curves in each panel). Columns167

and rows indicate the LBA model variant used to generate and fit the synthetic data, respectively. To illustrate168
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Table 1: Parameters used to generate synthetic data. Note that the same t0 parameters were used for all distributions. The v parameter
rows corresponds to the normal mean, gamma scale (beta) , Fréchet shape (α) and lognormal standard deviation (sigma) parameters,
and the s parameter row corresponds to the normal standard deviation, gamma shape (alpha), Fréchet scale (mu) and lognormal mean
(mu) parameters.

Drift Rate Distribution
Parameter Truncated Normal Fréchet Gamma Lognormal
t0 (speed) 0.15

t0 (accuracy) 0.20
b−A (speed) 0.20 0.57 0.05 1.20

b−A (accuracy) 1.00 1.14 1.00 2.70
vc 3.00 1.86 4.20 1.60
ve 1.50 2.50 2.50 0.50
sc 0.75 2.25 0.70 0.60
A 3.00 1.00 6.00 2.80

with an example, the lower-left panel shows the results when synthetic data were generated from an LBA model169

variant where drift rates are sampled from a normal distribution truncated to positive values, and then fit using170

an LBA model variant with a lognormal distribution for drift rates. The left-most set of black circles in that panel171

show the 10th, 30th, 50th, 70th, and 90th percentiles of the correct responses from the speed-emphasis condition of172

the synthetic data, averaged over participants. These percentiles are plotted against the probability of jointly173

observing a correct response in data from that condition, and the associated response time falling in the bottom174

10th, 30th, 50th, 70th, and 90th of the data from that condition. The solid grey and black lines overlaid illustrate the175

same quantities calculated from the maximum-likelihood parameter estimates of the fitting model.176

The panels along the main diagonal of Figure 3 show almost perfect agreement between the synthetic data177

(symbols) and posterior predictive data (lines). This is to be expected, showing that, as for the traditional LBA, in178

large samples maximum-likelihood estimation is able to recover parameters values for the variants. We investigate179

the accuracy of the recovered parameters in these self-fits below. The off-diagonal panels illustrate that the LBA180

model does not appear to suffer from undue flexibility; rather, its predictions appear quite tightly constrained. This181

is apparent in the inability of some model variants to enable a close fit to synthetic data generated by a different182

variant. For example, the truncated normal LBA provided a quite poor fit to data generated from the lognormal183

LBA and by the Fréchet LBA.184

An important property of the conventional LBA model is its ability to support accurate parameter esti-185

mation. We tested the new LBA variants on this ability, by examining the four cases where the same LBA model186

variant was used to both generate and fit synthetic data – i.e., the cases shown in the main diagonal of Figure 3.187

Table 2 shows the absolute difference between the data-generating parameter values and their maximum-likelihood188

estimates, expressed as percentages. It is clear that the three new LBA model variants developed above all support189

excellent model recovery, at least for these parameter values and in large samples.190
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Table 2: Absolute bias in recovered parameters (in percent, rounded to nearest integer).

Drift Rate Distribution
Parameter Truncated Normal Fréchet Gamma Lognormal
t0 (speed) 1 1 0 1

t0 (accuracy) 4 1 2 2
b−A (speed) 2 0 2 3

b−A (accuracy) 3 2 5 1
vc 0 0 2 0
ve 1 1 2 1
sc 0 0 2 0
A 0 1 1 2

Fits to Real Data191

A final test for the three new LBA model variants was to account for real data. Our aim here was not192

to falsify any particular variant, because that decision is probably not best made on the basis of a single data193

set. Rather, we aimed to establish whether the new LBA model variants were capable of fitting real data to194

approximately the same degree as the conventional LBA, thus validating their suitability for future investigation.195

For testing, we used data from a lexical decision task reported by, Wagenmakers et al. (2008) (their Experiment 2),196

in which eight participants each classified 1,920 letter strings as either valid or invalid words (words vs. non-words).197

There were two within-subject manipulations of interest. Firstly, half of the blocks of trials contained three times198

as many word as non-word stimuli, with the other half of blocks having three times as many non-word as word199

stimuli. Secondly, the type of word stimuli varied randomly from trial to trial in three classes – high frequency200

(common) words, low frequency (uncommon) words, and very low frequency (very rare) words. Higher frequency201

words are easier for participants to classify correctly, leading to higher accuracy rates and shorter response times.202

Wagenmakers et al. used this experiment to investigate criterion setting using the diffusion model, which would be203

expected to be selectively influenced by the proportion of words and non-words in each block.204

We fit each model to these data using maximum likelihood estimation following the methods outlined by205

Donkin et al. (2009a). Heathcote and Love (2012) used the same methods to compare their Lognormal Race Model206

to the truncated normal LBA, and to the conventional LBA. They found the conventional and truncated normal207

LBA models fit about equally well to data from the first experiment reported by Wagenmakers et al. (2008), and208

both fit a little better than the Lognormal Race Model. Here we also used the truncated normal LBA – which209

once again fit about as well as the conventional LBA – so that none of the four models being compared allowed210

undefined response times.211

For each participant, we estimated a single non-decision time parameter (t0) and assumed a selective212

influence of the stimulus manipulation (i.e., non-words and the various types of words) on only the two rate213

parameters. However, we otherwise used a quite flexible parameterisation for the models in order to see if they214

could capture fine details in the data, such as small but theoretically important effects on the relative speeds215

of correct and incorrect responses. Starting point variability (A) and the threshold (b) parameters could differ216
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both between word and non-word accumulators and between the proportion conditions, allowing for differences in217

response bias. Similarly, we let both rate parameters vary with proportion condition and with accumulator (i.e., a218

different values for the accumulator that matches the stimulus and the one that mismatches).219

We explored two solutions to the scaling issue: fixing either the scale parameter of the rate distributions or220

the mean threshold parameter, in both cases for just one accumulator in one condition. Differences in estimation221

performance (i.e., larger maximised likelihood values and less variable parameter estimates) reflected the pairings222

found in the last section; overall there was slightly better performance in terms of speed of convergence when fixing223

the scale parameter for the truncated normal and gamma variants, and slightly better performance for the lognormal224

and Fréchet variants when fixing the threshold parameter. We report goodness of fit results for each variant based225

on the best overall scaling solution for that variant. The best overall fit, as quantified by maximised log-likelihood226

values summed over participants (L), was given by the gamma (L = 12,710) followed by the positive LBA (L =227

12,511) and lognormal (L = 12,341), with the Fréchet noticeably worse (L = 10,373).228

Figure 4 shows that all four model variants provided a good account of the lexical decision accuracy, with229

all predicted values falling within the 95% confidence intervals except for one case each for the truncated normal and230

gamma models. Figure 5 quantifies the description of RT distribution for correct responses by displaying estimates231

of the middle of the distribution (i.e., the median RT or 50th percentile) and its fast (10th percentile) and slow232

(90th percentile) tails. Again the fit is quite good, with no predicted values falling outside the confidence intervals233

except for the Fréchet 10th percentile, which is underestimated for all word stimuli in the 25%-word condition and234

for non-words in the 75%-word condition.235

Figure 6 enables comparison of correct and error RT, displaying the median for each. The fits to error236

RT are noticeably worse than those to correct RT, which is largely attributable the relative infrequency of error237

responses, particularly for high-frequency words, and for non-words in the 25% condition. The attendant variability238

is reflected in large 95% confidence intervals for these points, and overall all models have at most one or two239

predicted points falling outside the 95% confidence intervals for errors. Importantly, all models capture the general240

“crossover” pattern, caused by errors being faster than correct responses for the rarer stimulus type (i.e., words in241

the 25% condition and non-words in the 75% condition) and slower than correct responses for the more common242

stimulus type (i.e., non-words in the 25% condition and words in the 75% condition), with the worst quantitative243

accounts provided by the truncated normal and Fréchet variants for non-words with 75% words. As noted by244

Wagenmakers et al. (2004), the crossover pattern follows from the geometry of the evidence accumulation process.245

For example, in the 75% word condition, where there is a bias towards word responses, and hence a smaller distance246

to the word than non-word threshold at the start of accumulation, correct “word” responses (which terminate on247

the closer word boundary) are faster than incorrect “word” responses (which terminate on the more distant nonword248

boundary). This reverses in the 25% word condition where the bias is towards non-words.249
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Discussion250

The linear ballistic accumulator model of Brown and Heathcote (2008) assumes that simple decisions are251

made by evidence accumulators racing towards a threshold. The LBA model makes a key simplifying assumption,252

that the accumulation of evidence is linear and deterministic. This simplification allows for simple, closed-form,253

expressions for the probability density and cumulative distribution functions of the time taken to reach threshold.254

Instead of allowing variability in the evidence accumulation process within a trial, as assumed – with only a255

few exceptions (e.g., Grice, 1972) – by earlier evidence accumulation models, the LBA model assumes only decision-256

to-decision variability in the rate of evidence accumulation and in the amount of evidence accumulated prior to257

stimulus onset. In the LBA model the distribution assumed for drift rates was normal, so that some decisions258

could sample negative drift rates, potentially leading to indeterminate finishing times for evidence accumulation.259

Whether or not this is a conceptual problem for the model probably depends on taste, and in practice it has260

not proven problematic, but, nevertheless, it is worth addressing. Here, we outlined a more general mathematical261

treatment for replacing the normal distribution of drift rates with strictly positive distributions, while still providing262

closed-form expressions for the density and cumulative distribution functions. Our approach requires only that the263

candidate drift rate distribution itself has closed-form expressions for its density and distribution functions, as well264

as a differentiable expression for its mean when truncated to a closed interval.265

We illustrated this approach using three new candidate distributions for drift rates: the Fréchet, gamma266

and lognormal distributions. These distributions, along with the truncated normal LBA, were all used to generate267

synthetic data. The four distributions lead to quite different distributions of drift rates, as shown in the left268

column of Figure 7. Even so, the strict constraints imposed by the structure of the LBA model means that the RT269

distributions predicted by these drift rates are broadly similar. For example, the CDFs from the four LBA variants270

(second-to-right column of Figure 7) are difficult to tell apart. Even the hazard functions (right column) are only271

qualitatively different in the tails, where the Fréchet distribution’s hazard function does not decrease. We do not272

have great confidence that differences in the hazard functions could help with empirically distinguishing the model273

variants, for two reasons. Firstly, informal investigation of the parameter space revealed that the qualitative patterns274

of hazard functions in Figure 7 was not invariant. For some parameter settings, for example, the hazard function275

of the Fréchet LBA showed the same increasing-then-decreasing shape as the other model variants. Secondly,276

in applications, the tails of the hazard functions are calculated from a very small proportion of the data. Such277

calculations are inherently noisy, and have proven inconclusive in the past (e.g. Luce, 1986).278

Fits of these four LBA variants showed that all models were able to account for real data (Wagenmakers279

et al., 2008, Experiment 2) adequately, but certainly not identically. Fits of the four models to data generated by280

another of the models also showed similarities and differences among the models, probably representing both the281

relative flexibility of the models and perhaps differences in the tails of the distributions. For example, Figure 3282

shows that the truncated normal LBA cannot adequately fit data generated by the Fréchet LBA. The lognormal283
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LBA is so constrained that it could not adequately fit data by any of the three other variants, at least for the284

particular set of parameters investigated.285

Clearly, further work is required to assess the generality of these findings, both with respect to real data286

and model mimicry 1. In order to facilitate such work, and the broader use of the new LBA variants, we have287

added their CDF and PDF equations to the package rtdists for the open-source statistical language R (Singmann288

et al., 2015). This package includes help sections, instructions, and simple examples of how to use the routines. It289

is available for download from https://cran.r-project.org/web/packages/rtdists/.290

Consideration of the variability assumptions in decision models is particularly apposite at the moment,291

given recent attention to these assumptions, and to questions about the flexibility and falsifiability of decision-292

making models. Jones and Dzhafarov (2014) analyzed a new set of quite different models, in which the drift rate293

distributions were allowed to be arbitrarily complex, and to vary arbitrarily between conditions. Unsurprisingly,294

these models are unfalsifiable; they can fit any pattern of data. Our results do not speak to that conclusion,295

because we consider only models constrained in the usual manner, with parametric assumptions on drift rates.296

However, our results speak against the broader implications levelled by Jones and Dzhafarov, that the variability297

assumptions of accumulator models make them difficult to tell apart. The results in Figure 3 demonstrate that there298

exist patterns of results that each LBA model variant cannot accommodate (see also Heathcote et al., in press).299

Even more importantly, these patterns of results are not outlandish or unrealistic, but look a lot like typical data300

from decision-making experiments. Secondly, our fits to real data show that the three new LBA model variants301

all perform adequately, which contradicts Jones and Dzhafarov’s implication that the particular assumption of a302

normal distribution was key in the LBA model’s success.303

More generally, our approach illustrates a tractable way to investigate the properties conferred on the304

LBA model by different choices of drift rate distribution. By comparing new variants that differ only in their305

distributions of drift rates, the consequences of each choice of drift rate distribution can be examined. This approach306

runs counter to claims made by Jones and Dzhafarov (2014) regarding the inability to separate out the effects of307

different assumptions. In particular, Jones and Dzhafarov suggested that assumptions about the architecture of the308

LBA model (such as linear evidence accumulation) could not be separated from assumptions about the distribution309

of drift rates. Our approach provides another method for investigating exactly those comparisons.310

Which is the best distribution for drift rates?311

Because of its broad scope, answering the question of which is the best parametric distribution to assume312

for drift rates, is beyond what could be achieved here. Our goal was instead to set out a method by which alternative313

drift rate distributions could be investigated. Deciding which distribution is best is a multi-faceted problem, because314

1The degree of mimicry is likely to vary in different regions of parameter space. A reviewer suggested quantifying similarity between
distributions using the Kullback-Liebler distance metric. We agree that this is a very useful way of summarising findings from the sort
of large-scale study that would be necessary to thoroughly investigate model mimicry.
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of the many different ways in which we might define “best”. One way in which a distribution might be better than315

another is that it might lead to better fits to empirical data. This, however, requires fitting a wide variety of316

data sets from different experimental paradigms. The process of fitting many different data sets is the best way to317

validate and test a new model, enabling one to uncover unforeseen problems, and to identify situations in which the318

model does and does not fit well. This comparison will also require careful attention to issues of model selection.319

Even though all of the candidate drift rate distributions we have considered have the same number of parameters,320

they will certainly differ in their functional form complexity, which makes model selection difficult. Even more, they321

will differ in complexity depending on how the drift rate distributions’ parameters are constrained across different322

conditions or groups in an experiment. Given these considerations, an appropriate model selection metric must323

take into account complexity in a sophisticated manner; for example metrics based on predictive performance such324

as the Bayes factor or cross-validation.325

A second way in which one drift rate distribution may be better than another is that it may be gener-326

ated by psychologically meaningful assumptions. That is, there may exist cognitive theories which give rise to a327

particular parametric form for drift rates. For example, the lognormal distribution we have considered here might328

be motivated by cascaded processing stages (Heathcote and Love, 2012). Alternatively, the Fréchet distribution329

might be motivated by the consideration of Luce-style choice models (Colonius and Marley, 2014). The methods we330

outline here provide a template to help others incorporate into the LBA new drift rate distributions motivated by331

different theoretical considerations. Similar approaches have previously been taken with categorisation and absolute332

identification models (Nosofsky and Palmeri, 1997; Brown et al., 2008).333

A third measure of superiority for the drift rate distributions is based on their statistical properties. A334

primary use of the LBA model is in the measurement of cognitive effects, for example between experimental335

conditions (Rae et al., 2014) or between different populations (Ho et al., 2014). It is important for such applications336

that the model is able to accurately recover the data-generating parameters. While this has been demonstrated337

for the conventional LBA, our analyses suggest that the new variants investigated here may perform even better338

in this sense. However, further investigations are required to compare the variants in more realistic sample sizes.339

Such investigations could also address the issue of model mimicry in more detail, determining what sample sizes340

are required to differentiate among variants in different parameter regions.341

A problem related to the choice between different drift rate distributions is the precise parameterisation342

used for each model variant. In the truncated normal LBA model the drift rate distribution was characterised by343

a mean parameter and a standard deviation parameter. This parameterisation has worked well in many situations,344

and allows for a separation of effects on location and scale of the drift rate distributions. The new proposed drift345

rate distributions all have two parameters each, but do not all have a natural location-and-scale parametersiation.346

Additionally, each new distribution has at least two different parameterisations that are relatively widely used (such347

as as the rate vs. mean parameterisation for the gamma distribution). It seems likely that identifying the best348
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parameterisation for any new distribution will require large scale empirical investigations.349
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Appendix A407

Details for Gamma Distribution408

The gamma distribution function at x, with shape parameter α and scale parameter β is:409

G(x;α, β) =
γ(α, xβ )

Γ(α)

Here, γ is the lower incomplete gamma function (i.e., γ(x, s) =
∫ s

0
ux−1e−udu) and Γ is the standard gamma410

function, which is just γ(x,∞). Equation 3 gives Z(t) for gamma-distributed drift rates. Its derivative with respect411

to time is:412

d

dt
(ZΓ(t)) =

−bΓ(α+ 1)
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Details for Fréchet Distribution413

The cumulative distribution function for the Fréchet distribution, with shape parameter α and scale pa-414

rameter µ is:415

p(x;α, µ) = exp

((
−x
µ

)−α)

Equation 4 gives Z(t) for Fréchet-distributed drift rates. Its derivative with respect to time is:416

d

dt
(ZFr(t)) =
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Details for Lognormal Distribution417

The cumulative distribution function for the lognormal distribution, with underlying mean µ and standard418

deviation σ is:419

18



p(x;µ, σ) = Φ(log(x);µ, σ)

As throughout, Φ(.;µ, σ) indicates the cumulative distribution function of a normal Equation 5 gives Z(t)420

for lognormally-distributed drift rates. Its derivative with respect to time is:421

d

dt
(ZLN (t)) =

−1

tσ

[(
φ

(
log( bt )− µ− σ

2
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Figure 3: Results of cross-fitting the model variants. Columns indicate which of the four LBA model variants was used to generate
synthetic data (name of drift rate distribution for each variant given at top of column). Likewise, rows indicate which variant was
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circles, and for errors by triangles. Overlaid open symbols and dotted lines show the model fits.
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Figure 5: Lexical decision RT quantiles (10th, 50th and 90th percentiles) for correct responses and corresponding model fits, both
averaged over participants, as a function of stimulus (nw = non-word, for words hf = high frequency, lf = low frequency, vlf = very-low
frequency) and proportion of word stimuli. Error bars indicate 95% confidence intervals.
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Figure 6: Lexical decision median RT for correct and error responses and corresponding model fits, both averaged over participants, as
a function of stimulus (nw = non-word, for words hf = high frequency, lf = low frequency, vlf = very-low frequency) and proportion of
word stimuli. Error bars indicate 95% confidence intervals.
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Figure 7: Each of the four LBA variants is shown on a different row. The left column shows the distributions of drift rates for two
accumulators which race to produce RT distributions. The other three columns show the following properties of those RT distributions,
from left-to-right: the PDF, the CDF, and the hazard function (i.e. PDF

1−CDF
). The parameters used to generate this plot match the

parameters used for the main simulation study.
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